मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate `Integration E^X [(Cosx - Sin X)/Sin^2 X]Dx` - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`

उत्तर

`I = inte^x [cosx/sin^2x - sinx/sin^2x]dx`

`= int e^x[(cotx.cosecx, -cosecx),(f'(x), f(x))]`

∵ `int e^x[f(x) + f'(x)]dx  = e^x f(x) + C`

`:. I = -e^x.cosec x + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March)

APPEARS IN

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×