Advertisements
Advertisements
प्रश्न
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
उत्तर
`I = inte^x [cosx/sin^2x - sinx/sin^2x]dx`
`= int e^x[(cotx.cosecx, -cosecx),(f'(x), f(x))]`
∵ `int e^x[f(x) + f'(x)]dx = e^x f(x) + C`
`:. I = -e^x.cosec x + C`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`