Advertisements
Advertisements
Question
Assertion (A): Two coins are tossed simultaneously. The probability of getting two heads, if it is known that at least one head comes up, is `1/3`.
Reason (R): Let E and F be two events with a random experiment, then `P(E/F) = (P(E ∩ F))/(P(E))`.
Options
Both (A) and (R) are true and (R) is the correct explanation of (A).
Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(A) is true, but (R) is false.
(A) is false, but (R) is true.
Solution
Both (A) and (R) are true and (R) is the correct explanation of (A).
Explanation:
Two coins are tossed simultaneously.
Sample space i.e., possible outcomes are {HT, TH, HH, TT}
E = event of getting two heads
F = event of getting at least one head
P(E) = `1/4`, P(F) = `3/4`, P(E ∩ F) = `1/4`
`P(E/F) = (P(E ∩ F))/(P(F))`
= `((1/4))/((3/4))`
= `1/3`
APPEARS IN
RELATED QUESTIONS
Find the probability of 4 turning up at least once in two tosses of a fair die.
A coin is tossed 5 times. What is the probability that head appears an even number of times?
A problem is given to three students whose chances of solving it are `1/4, 1/5` and `1/3` respectively. Find the probability that the problem is solved.
A pair of dice is thrown. What is the probability of getting an even number on the first die or a total of 8?
Find total number of distinct possible outcomes n(S) of the following random experiment.
From a box containing 25 lottery tickets any 3 tickets are drawn at random.
Find total number of distinct possible outcomes n(S) of the following random experiment.
From a group of 4 boys and 3 girls, any two students are selected at random.
Two dice are thrown. Write favourable outcomes for the following event.
Q: Sum of the numbers on two dice is 7.
Box-I contains 8 red (R11, R12, R13) and 2 blue (B11, B12) marbles while Box-II contains 2 red(R21, R22) and 4 blue (B21, B22, B23, B24) marbles. A fair coin is tossed. If the coin turns up heads, a marble is chosen from Box-I; if it turns up tails, a marble is chosen from Box-II. Describe the sample space.
There are 2 red and 3 black balls in a bag. 3 balls are taken out at random from the bag. Find the probability of getting 2 red and 1 black ball or 1 red and 2 black balls.
Three dice are thrown at the sametime. Find the probability of getting three two’s, if it is known that the sum of the numbers on the dice was six.
A bag contains 4 white and 5 black balls. Another bag contains 9 white and 7 black balls. A ball is transferred from the first bag to the second and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.
Bag I contains 3 black and 2 white balls, Bag II contains 2 black and 4 white balls. A bag and a ball is selected at random. Determine the probability of selecting a black ball.
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
Three bags contain a number of red and white balls as follows:
Bag 1:3 red balls, Bag 2:2 red balls and 1 white ball
Bag 3:3 white balls.
The probability that bag i will be chosen and a ball is selected from it is `"i"/6`, i = 1, 2, 3. What is the probability that a white ball is selected?
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
A flashlight has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, the probability that both are dead is ______.
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is ______.
In a college, 30% students fail in physics, 25% fail in mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in physics if she has failed in mathematics is ______.
A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`, respectively. If the probability of their making a common error is, `1/20` and they obtain the same answer, then the probability of their answer to be correct is ______.
A card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is either ace or a king?
The probability of getting qualified in JEE-Mains and JEE-Advanced by a student are `1/5` and `3/5` respectively. The probability that the students gets qualified for one of these tests is
A box contains 10 balls, of which 3 are red, 2 are yellow, and 5 are blue. Five balls are randomly selected with replacement. Calculate the probability that fewer than 2 of the selected balls are red?
Two cards are drawn together from a pack of 52 cards. The probability that one is a spade and one is a heart, is?
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red is:
Bag P contains 6 red and 4 blue balls and bag Q contains 5 red and 6 blue balls. A ball is transferred from bag P to bag Q and then a ball is drawn from bag Q. What is the probability that the ball drawn is blue?