Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I }= \int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
\[ = I_1 + I_2\]
Consider
Now,
\[f\left( - x \right) = \frac{2\left( - x \right)}{1 + \cos^2 \left( \pi - x \right)} = - \frac{2x}{1 + \left( - \cos x \right)^2} = - \frac{2x}{1 + \cos^2 x} = - f\left( x \right)\]
Again, consider
\[g\left( - x \right) = \frac{2\left( - x \right)\sin\left( - x \right)}{1 + \cos^2 \left( - x \right)} = \frac{2x\sin x}{1 + \cos^2 x} = g\left( x \right) \left[ \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right]\]
\[\therefore I_2 = \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = 2 \times 2 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 4 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ..................(1)\]
Then,
\[I_2 = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)}dx = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin x}{1 + \cos^2 x}dx .................(2) \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
Adding (1) and (2), we get
\[2 I_2 = 4 \int_0^\pi \frac{\pi\sin x}{1 + \cos^2 x}dx\]
\[ \Rightarrow 2 I_2 = 4\pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x}dx\]
Put cos x = z
When
When
\[\therefore 2 I_2 = - 4\pi \int_1^{- 1} \frac{dz}{1 + z^2}\]
\[ \Rightarrow 2 I_2 = - 4\pi \times \tan^{- 1} z_1^{- 1} \]
\[ \Rightarrow 2 I_2 = - 4\pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} 1 \right]\]
\[ \Rightarrow 2 I_2 = - 4\pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right) = 2 \pi^2 \]
\[ \Rightarrow I_2 = \pi^2\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`