मराठी

Evaluate the Following Integral: ∫ π − π 2 X ( 1 + Sin X ) 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
बेरीज

उत्तर

\[\text{Let I }= \int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Then,
\[I = \int_{- \pi}^\pi \frac{2x}{1 + \cos^2 x}dx + \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = I_1 + I_2\]

Consider

\[f\left( x \right) = \frac{2x}{1 + \cos^2 x}\]

Now,

\[f\left( - x \right) = \frac{2\left( - x \right)}{1 + \cos^2 \left( \pi - x \right)} = - \frac{2x}{1 + \left( - \cos x \right)^2} = - \frac{2x}{1 + \cos^2 x} = - f\left( x \right)\]

\[\therefore I_1 = \int_{- \pi}^\pi \frac{2x}{1 + \cos^2 x}dx = 0 \left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Again, consider

\[g\left( x \right) = \frac{2x\sin x}{1 + \cos^2 x}\]

\[g\left( - x \right) = \frac{2\left( - x \right)\sin\left( - x \right)}{1 + \cos^2 \left( - x \right)} = \frac{2x\sin x}{1 + \cos^2 x} = g\left( x \right) \left[ \sin\left( - x \right) = - \sin x and \cos\left( - x \right) = \cos x \right]\]

\[\therefore I_2 = \int_{- \pi}^\pi \frac{2x\sin x}{1 + \cos^2 x}dx\]
\[ = 2 \times 2 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 4 \int_0^\pi \frac{x\sin x}{1 + \cos^2 x}dx ..................(1)\]

Then, 

\[I_2 = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)}dx = 4 \int_0^\pi \frac{\left( \pi - x \right)\sin x}{1 + \cos^2 x}dx .................(2) \left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]

Adding (1) and (2), we get

\[2 I_2 = 4 \int_0^\pi \frac{\pi\sin x}{1 + \cos^2 x}dx\]
\[ \Rightarrow 2 I_2 = 4\pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x}dx\]

Put cos x = z

\[\Rightarrow - \sin x\ dx = dz\]

When

\[x \to 0, z \to 1\]

When 

\[x \to \pi, z \to - 1\]

\[\therefore 2 I_2 = - 4\pi \int_1^{- 1} \frac{dz}{1 + z^2}\]
\[ \Rightarrow 2 I_2 = - 4\pi \times \tan^{- 1} z_1^{- 1} \]
\[ \Rightarrow 2 I_2 = - 4\pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} 1 \right]\]
\[ \Rightarrow 2 I_2 = - 4\pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right) = 2 \pi^2 \]
\[ \Rightarrow I_2 = \pi^2\]

\[\therefore I = I_1 + I_2 = 0 + \pi^2 = \pi^2\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 29 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×