Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
उत्तर
\[\text { Let } I = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\text { Put} \cos^{- 1} x = t\]
\[\text { Differentiating with respect to } x: \]
\[\frac{- 1}{\sqrt{1 - x^2}}dx = dt\]
\[I = - \int \text { t cost dt }\]
Applying integration by parts:
\[\int f\left( x \right)g\left( x \right)dx = f\left( x \right)\int g\left( x \right)dx - \int\left( f'\left( x \right)\int g\left( x \right)dx \right)dx\]
\[ \Rightarrow I = - \left[ t\int\cos t dt - \int\left( \frac{d\left( t \right)}{dt}\int\cos t dt \right)dt \right]\]
\[ \Rightarrow I = - \left[ t \sin t - \int\sin t dt \right]\]
\[ \Rightarrow I = - t \sin t - \cos t + C\]
\[I = - t\sqrt{1 - \cos^2 t} - \cos t + C\]
\[\text { Substituting the value of t }: \]
\[I = - \cos^{- 1} x\sqrt{1 - \cos^2 \left( \cos^{- 1} x \right)} - \cos\left( \cos^{- 1} x \right) + C\]
\[I = - \left( \sqrt{1 - x^2} \right) \cos^{- 1} x - x + C\]
APPEARS IN
संबंधित प्रश्न
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
`int_0^(2/3) dx/(4+9x^2)` equals:
`int_6^(2/3) (dx)/(4 + 9x^2)` equals
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`