Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
उत्तर
Putting `x^2 = t`
`x dx = 1/2 dt`
`= 1/2 int e^t dt`
`= e^t/2 = e^(x^2)/2`
`= int_0^1 xe^(x^2) dx = 1/2 [e^(x^2)]_0^1`
`= 1/2 [e^t - e^0] = 1/2 (e - 1)`
APPEARS IN
संबंधित प्रश्न
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
`int_0^(2/3) dx/(4+9x^2)` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`