Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
उत्तर
`= [(4x^4)/4 - (5x^3)/3 + (6x^2)/2 + 9x]_1^2`
`= (x^4 - 5/3 x^3 + 3x^2 + 9x)_1^2`
`= (2^4 - 1^4) - 5/3 (2^3 - 1^3) + 3 (2^2 - 1^2) + 9 (2 - 1)`
`= (16 - 1) - 5/3 (8 - 1) + 3 (4 - 1) + 9 (1)`
`= 15 - 35/3 + 9 + 9`
`= 33 - 35/3`
`= (99 - 35)/3`
`= 64/3`
APPEARS IN
संबंधित प्रश्न
If `int_0^h1/(2+8x^2)dx=pi/16 `then find the value of h.
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_2^3 1/x dx`
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) tan x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_2^3 dx/(x^2 - 1)`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_0^(2/3) dx/(4+9x^2)` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`