Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
उत्तर
Let I = `int "cosec" (log x)[1 - cot (log x)].dx`
Put log x = t
∴ et
∴ dx = et .dt
∴ I = `int "cosec" t (1 - cot t).e^t dt`
= `int e^t ["cosec" t - "cosec" t cot t].dt`
= `int e^t ["cosec" t + d/dt ("cosec" t)].dt`
= `e^t "cosec" t + c ...[∵ int e^t [f(t) + f'(t)].dt = e^t f(t) + c]`
= x . cosec (log x) + c.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin 3x.
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in tan-1 x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : e2x sin x cos x
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int1/(x+sqrt(x)) dx` = ______
`inte^(xloga).e^x dx` is ______
`int(xe^x)/((1+x)^2) dx` = ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`