हिंदी

∫tanx+cotx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int sqrt(tanx) + sqrt(cotx)  "d"x`

योग

उत्तर

Let I = `int (sqrt(tanx) + sqrt(cotx))  "d"x`

= `int (sqrt(tanx) + 1/sqrt(tanx))  "d"x`

= `int (tanx + 1)/sqrt(tanx)  "d"x`

Put `sqrt(tanx)` = t

∴ tanx = t2

∴x = tan−1(t2)

∴ dx = `1/(1 + ("t"^2)^2) * 2"t" "dt"`

∴ dx = `(2"t")/(1 + "t"^4)  "dt"`

∴ I = `int ("t"^2 + 1)/"t"* (2"t")/(1 + "t"^4)  "dt"`

= `2 int ("t"^2 + 1)/("t"^4 + 1)  "dt"`

= `2 int (1 + 1/"t"^2)/("t"^2 + 1/"t"^2)  "dt"`

= `2 int (1 + 1/"t"^2)/(("t" - 1/"t")^2 + 2)`

Put `"t" - 1/"t"` = u

∴ `(1 + 1/"t"^2) "dt"` = du

∴ I = `2 int "du"/("u"^2 + 2)`

= `2 int  "du"/("u"^2 + (sqrt(2))^2`

= `2* 1/sqrt(2)tan^-1 ("u"/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 (("t" - 1/"t")/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 (("t"^2 - 1)/sqrt(2)) + "c"`

= `sqrt(2)tan^-1 ((tanx - 1)/sqrt(2tanx)) + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Long Answers III

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in `x^2e^x`.


Integrate the function in xlog x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in x (log x)2.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int(1-x)^-2 dx` = ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×