Advertisements
Advertisements
प्रश्न
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
उत्तर
Let I = `int (sin^-1x)/(1 - x^2)^(3//2) dx`
Consider t = sin–1 x
`dt/dx = 1/sqrt(1 - x^2)`
∴ I = `int (t.dt)/((1 - x^2))`
= `int (t.dt)/((1 - sin^2t))`
= `int (t.dt)/(cos^2t)`
= `int t . sec^2 t dt`
On integrating by parts
= `t int sec^2t.dt - int {(d(t))/dt int sec^2 t}dt`
= `t tan t - int 1.tan t dt`
= t tan t – log sec t + C
= sin–1x tan [sin–1x] – log sec [sin–1x] + C
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`intsqrt(1+x) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.