Advertisements
Advertisements
प्रश्न
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
उत्तर
Let I = `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
We perform actual division and express the result as:
`"Dividend"/"Divisor" = "Quotient" + "Remainder"/"Divisor"`
x - 1
`2"x"^2 - "x" - 10)overline(2"x"^3 - 3"x"^2 - 9"x" + 1)`
`2"x"^3 - "x"^2 - 10"x"`
(-) (+) (+)
`- 2"x"^2 + "x" + 1`
`- 2"x"^2 + "x" + 10`
(+) (-) (-)
- 9
∴ I = `int("x - 1" + (-9)/(2"x"^2 - "x" - 10))` dx
`= int "x" * "dx" - int 1 * "dx" - 9 int 1/(2"x"^2 - "x" - 10) "dx"`
Here 2x2 - x - 10
`= 2("x"^2 + 1/2"x" + 1/16 - 5 - 1/16)`
`= 2 [("x" - 1/4)^2 - 81/16]`
∴ I = `int "x" * "dx" - int 1 * "dx" - 9/2 int 1/(("x" - 1/4)^2 - (9/4)^2)`dx
`= "x"^2/2 - "x" - 9/2 * 1/(2 (9/4)) log |("x" - 1/4 - 9/4)/("x" - 1/4 + 9/4)| + "c"_1`
`= "x"^2/2 - "x" - log |("x" -5/2)/("x + 2")| + "c"_1`
`= "x"^2/2 - "x" - log|("2x" - 5)/(2("x + 2"))| + "c"_1`
`= "x"^2/2 - "x" + log|(2("x + 2"))/("2x" - 5)| + "c"_1`
`= "x"^2/2 - "x" + log |("x + 2")/("2x - 5")| + log 2 + "c"_1`
∴ I = `"x"^2/2 - "x" + log|("x + 2")/("2x - 5")| + "c" "where" "c" = "c"_1 + log 2`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int x^7/(1 + x^4)^2 "d"x`
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int 1/(sinx(3 + 2cosx)) "d"x`
Evaluate `int x log x "d"x`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.