हिंदी

Integrate the following functions w.r.t. x : (x+1)2x2+3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`

योग

उत्तर

Let I = `int (x + 1)sqrt(2x^2 + 3)`

Let x + 1 = `"A"[d/dx (2x^2 + 3)] + "B"`

= A (4x) + B
= 4Ax + B
Comparing the coefficients of and constant on both sides, we get
4A = 1, B = 1

∴ A = `(1)/(4), "B"` = 1

∴ x + 1 = `(1)/(4)(4x) + 1`

∴ I = `int [1/4 (4x) + 1]sqrt(2x^2 + 3).dx`

= `(1)/(4) int 4x sqrt(2x^2 + 3).dx + int sqrt(2x^2 + 3).dx`.

= I1 + I2

In I1 = put 2x2 + 3 = t
∴ 4x.dx = dt

∴ I1 = `(1)/(4) int t^(12).dt`

= `(1)/(4)(t^(3/2)/(3/2)) + c_1`

= `(1)/(6)(2x^2 + 3)^(3/2) + c_1`

I2 = `int sqrt(2x^2 + 3).dx`

= `sqrt(2) int sqrt(x^2 + 3/2).dx`

= `sqrt(2)[x/2sqrt(x^2 + 3/2) + ((3/2))/(2)log|x + sqrt(x^2 + 3/2)|] + c_2`

= `sqrt(2)[x/2sqrt(x^2 + 3/2) + (3)/(4)log|x + sqrt(x^2 + 3/2)|] + c_2`

∴ I = `(1)/(6)(2x^2 + 3)^(3/2) + sqrt(2)[x/2 sqrt(x^2 + 3/2) + (3)/(4) log|x + sqrt(x^2 + 3/2)|] + c`, where c = c1 + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 2.08 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1/x - 1/x^2)`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/(4x + 5x^(-11))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int logx/(1 + logx)^2  "d"x`


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


`intsqrt(1+x)  dx` = ______


`int logx  dx = x(1+logx)+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(logcosx)dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`intx^2e^(4x)dx`


The value of `inta^x.e^x dx` equals


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×