Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
उत्तर
Let I = `int (x + 1)sqrt(2x^2 + 3)`
Let x + 1 = `"A"[d/dx (2x^2 + 3)] + "B"`
= A (4x) + B
= 4Ax + B
Comparing the coefficients of and constant on both sides, we get
4A = 1, B = 1
∴ A = `(1)/(4), "B"` = 1
∴ x + 1 = `(1)/(4)(4x) + 1`
∴ I = `int [1/4 (4x) + 1]sqrt(2x^2 + 3).dx`
= `(1)/(4) int 4x sqrt(2x^2 + 3).dx + int sqrt(2x^2 + 3).dx`.
= I1 + I2
In I1 = put 2x2 + 3 = t
∴ 4x.dx = dt
∴ I1 = `(1)/(4) int t^(12).dt`
= `(1)/(4)(t^(3/2)/(3/2)) + c_1`
= `(1)/(6)(2x^2 + 3)^(3/2) + c_1`
I2 = `int sqrt(2x^2 + 3).dx`
= `sqrt(2) int sqrt(x^2 + 3/2).dx`
= `sqrt(2)[x/2sqrt(x^2 + 3/2) + ((3/2))/(2)log|x + sqrt(x^2 + 3/2)|] + c_2`
= `sqrt(2)[x/2sqrt(x^2 + 3/2) + (3)/(4)log|x + sqrt(x^2 + 3/2)|] + c_2`
∴ I = `(1)/(6)(2x^2 + 3)^(3/2) + sqrt(2)[x/2 sqrt(x^2 + 3/2) + (3)/(4) log|x + sqrt(x^2 + 3/2)|] + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
`intsqrt(1+x) dx` = ______
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`