Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{e^{2x}}{e^{2x} - 2}dx\]
\[\text{Putting }e^{2x} = t\]
\[ \Rightarrow 2 e^{2x} = \frac{dt}{dx}\]
\[ \Rightarrow e^{2x} dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t - 2}dt\]
\[ = \frac{1}{2} \text{ln }\left| t - 2 \right| + C\]
\[ = \frac{1}{2} \text{ln }\left| e^{2x} - 2 \right| + C \left[ \because t = e^{2x} \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`