मराठी

Evaluate the following: d∫0πxsinxcos2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`

बेरीज

उत्तर

Let I = `int_0^pi x sin x cos^2x "d"x`  ....(i)

I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`

I = `int_0^pi (pi - x) sin x cos^2x "d"x`  .....(ii)

Adding (i) and (ii) we get,

2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`

2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`

2I = `int__0^pi pi sin x cos^2x "d"x`

= `pi int_0^pi sin x cos^2x "d"x`

Put cos x = t

⇒ – sin x dx = dt

⇒ sin x dx = – dt

Changing the limits, we have

When x = 0 

t = cos 0 = 1

When x = `pi` 

= cos `pi` = – 1

2I = `pi int_1^(-1) - "t"^2 "dt"`

= `- pi int_1^(-1) "t"^2 "dt"`

2I = `pi int_(-1)^1 "t"^2 "dt"`  ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`

2I = `pi["t"^3/3]_(-1)^1`

= `pi[1/3 + 1/3]`

= `pi(2/3)`

∴ I = `pi/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 33 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×