Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
उत्तर
Let I = `int_0^pi x sin x cos^2x "d"x` ....(i)
I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`
I = `int_0^pi (pi - x) sin x cos^2x "d"x` .....(ii)
Adding (i) and (ii) we get,
2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`
2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`
2I = `int__0^pi pi sin x cos^2x "d"x`
= `pi int_0^pi sin x cos^2x "d"x`
Put cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Changing the limits, we have
When x = 0
t = cos 0 = 1
When x = `pi`
= cos `pi` = – 1
2I = `pi int_1^(-1) - "t"^2 "dt"`
= `- pi int_1^(-1) "t"^2 "dt"`
2I = `pi int_(-1)^1 "t"^2 "dt"` ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`
2I = `pi["t"^3/3]_(-1)^1`
= `pi[1/3 + 1/3]`
= `pi(2/3)`
∴ I = `pi/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.