Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\log x}{x}dx\]
\[Let, \log x = t\]
\[ \Rightarrow \frac{1}{x} = \frac{dt}{dx}\]
\[Now, \int\frac{\log x}{x}dx\]
= ∫ t . dt
\[ = \frac{t^2}{2} + C\]
\[ = \frac{\left( \log x \right)^2}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int dx/(e^x + e^(-x))` is equal to ______.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.