Advertisements
Advertisements
प्रश्न
Evaluate the following integral :-
उत्तर
\[\text{Let }I = \int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]
We express
\[\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow x = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x - 1 \right)\]
Equating the coefficients of `x^2` , x and constants, we get
\[0 = A + B\text{ and }1 = - B + C\text{ and }0 = A - C\]
\[\text{or }A = \frac{1}{2}\text{ and }B = - \frac{1}{2}\text{ and }C = \frac{1}{2} \]
\[ \therefore I = \int\left( \frac{\frac{1}{2}}{x - 1} + \frac{- \frac{1}{2}x + \frac{1}{2}}{x^2 + 1} \right)dx\]
\[ = \frac{1}{2}\int\frac{1}{x - 1}dx - \frac{1}{2}\int\frac{x}{x^2 + 1} dx + \frac{1}{2}\int\frac{1}{x^2 + 1} dx\]
\[ = \frac{1}{2} I_1 - \frac{1}{2} I_2 + \frac{1}{2} I_3 ............(1)\]
\[\text{Now, }I_1 = \int\frac{1}{x - 1}dx\]
Let x - 1 = u
On differentiating both sides, we get
\[ dx = du\]
\[ \therefore I_1 = \int\frac{1}{u}du\]
\[ = \log\left| u \right| + c_1 \]
\[ = \log\left| x - 1 \right| + c_1 ..............(2)\]
\[\text{And, }I_2 = \int\frac{x}{x^2 + 1} dx\]
\[\text{Let }\left( x^2 + 1 \right) = u\]
On differentiating both sides, we get
\[ 2x\ dx = du\]
\[ \therefore I_2 = \frac{1}{2}\int\frac{1}{u}du\]
\[ = \frac{1}{2}\log\left| u \right| + c_2 \]
\[ = \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 .............(3)\]
\[\text{And, }I_3 = \int\frac{1}{x^2 + 1} dx\]
\[ = \tan^{- 1} x + c_3 ..............(4)\]
From (1), (2), (3) and (4), we get
\[ \therefore I = \frac{1}{2}\left( \log\left| x - 1 \right| + c_1 \right) - \frac{1}{2}\left( \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 \right) + \frac{1}{2}\left( \tan^{- 1} x + c_3 \right)\]
\[ = \frac{1}{2}\log\left| x - 1 \right| - \frac{1}{4}\log\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + c\]
\[\text{Hence, }\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx = \frac{1}{2}\log\left| x - 1 \right| - \frac{1}{4}\log\left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + c\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`