हिंदी

The Matrix a = ⎡ ⎢ ⎣ 0 − 5 8 5 0 12 − 8 − 12 0 ⎤ ⎥ ⎦ is a - Mathematics

Advertisements
Advertisements

प्रश्न

The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

विकल्प

  • diagonal matrix

  • symmetric matrix

  • skew-symmetric matrix

  • scalar matrix

MCQ

उत्तर

Given:  

\[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\]

\[A^T = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}^T \] 

\[ = \begin{bmatrix}0 & 5 & - 8 \\ - 5 & 0 & - 12 \\ 8 & 12 & 0\end{bmatrix}\] 

\[ = - 1\begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] 

\[ = - A\]

Therefore, matrix A is skew-symmetric matrix.

Hence, the correct option is (c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.7 | Q 44 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


Write a square matrix which is both symmetric as well as skew-symmetric.


If a matrix A is both symmetric and skew-symmetric, then


If A is a square matrix, then AA is a


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×