हिंदी

If A = [0111] and B = [0-110], show that (A + B)(A – B) ≠ A2 – B2 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 

योग

उत्तर

Given that A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`

A + B = `[(0, 1),(1, 1)] + [(0, -1),(1, 0)]`

⇒  A + B = `[(0 + 0, 1 - 1),(1 + 1, 1 + 0)]`

⇒ A + B = `[(0, 0),(2, 1)]`

A – B = `[(0, 1),(1, 1)] - [(0, -1),(1, 0)]`

⇒ A – B = `[(0 - 0, 1 + 1),(1 - 1, 1 - 0)]`

⇒ A – B = `[(0, 2),(0, 1)]`

∴ `("A" + "B") * ("A" – "B") = [(0, 0),(2, 1)],[(0, 2),(0, 1)]`

= `[(0 + 0, 0 + 0),(0 + 0, 4 + 1)]`

= `[(0, 0),(0, 5)]`

Now, R.H.S. = A2 – B2

= `"A" * "A"  –  "B" * "B"`

= `[(0, 1),(1, 1)][(0, 1),(1, 1)] - [(0,-1),(1, 0)][(0, -1),(1, 0)]`

= `[(0 +1,0 +1),(0 + 1, 1 + 1)] - [(0 - 1, 0 + 0),(0 + 0, -1 + 0)]`

= `[(1, 1),(1, 2)] - [(-1, 0),(0, -1)]`

= `[(1 + 1, 1 -0),(1 -0, 2 + 1)]`

= `[(2, 1),(1, 3)]`

Hence, `[(0, 0),(0, 5)] ≠ [(2, 10),(1, 3)]`

Hence, (A + B) . (A – B) ≠ A2 – B 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 9 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A is a skew symmetric matric of order 3, then prove that det A  = 0


If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Show that all the diagonal elements of a skew symmetric matrix are zero.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A and B are symmetric matrices, then ABA is


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


AA′ is always a symmetric matrix for any matrix A.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×