हिंदी

AA′ is always a symmetric matrix for any matrix A. - Mathematics

Advertisements
Advertisements

प्रश्न

AA′ is always a symmetric matrix for any matrix A.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

Let P = AA'

P' = (AA')'

= (A')' . A'   .....[(AB)' = B'A']

= AA'

= P

So, P is symmetric matrix.

Hence, AA' is always a symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 98 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A is a skew symmetric matric of order 3, then prove that det A  = 0


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


If the matrix A is both symmetric and skew symmetric, then ______.


Show that all the diagonal elements of a skew symmetric matrix are zero.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If A is a square matrix, then AA is a


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×