Advertisements
Advertisements
प्रश्न
AA′ is always a symmetric matrix for any matrix A.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let P = AA'
P' = (AA')'
= (A')' . A' .....[(AB)' = B'A']
= AA'
= P
So, P is symmetric matrix.
Hence, AA' is always a symmetric matrix.
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
If the matrix A is both symmetric and skew symmetric, then ______.
Show that all the diagonal elements of a skew symmetric matrix are zero.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
Write a square matrix which is both symmetric as well as skew-symmetric.
If A is a square matrix, then AA is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?