हिंदी

If A is a skew-symmetric matrix, then A2 is a ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a skew-symmetric matrix, then A2 is a ______.

रिक्त स्थान भरें

उत्तर

If A is a skew-symmetric matrix, then A2 is a symmetric matrix.

Explanation:

Given A is skew-symmetric matrix.

∴ A' = –A

∴ (A2)' = (A')2

= (–A)2

= A2

So, A2 is a symmetric martix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 75 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


If the matrix A is both symmetric and skew symmetric, then ______.


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


Sum of two skew-symmetric matrices is always ______ matrix.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×