मराठी

For the matrix A = [1567] verify that (A - A') is a skew symmetric matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.

बेरीज

उत्तर

Now, (A - A') = `[(1,5),(6,7)] - [(1,6),(5,7)]`

`= [(1 - 1, 5 - 6), (6 - 5, 7 - 7)]`

`= [(0, -1), (1,0)]`

Then, (A - A') `= [(0, 1), (-1,0)] = -  [(0, -1), (1,0)]`

चूँकि (A - A') = -(A - A'),

Since (A - A') = -(A - A'), it proves that the matrix (A - A') is a skew symmetric matrix.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise 3.3 [पृष्ठ ८९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 3 Matrices
Exercise 3.3 | Q 8.2 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that all the diagonal elements of a skew symmetric matrix are zero.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


Write a square matrix which is both symmetric as well as skew-symmetric.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is symmetric matrix, then B′AB is ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A is any square matrix, then which of the following is skew-symmetric?


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×