मराठी

If andA=[-123579-211] and B=[-41-5120131] then verify that (A+ B)' = A' + B' - Mathematics

Advertisements
Advertisements

प्रश्न

If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'

बेरीज

उत्तर

Given, `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` and B = `[(-4,1,-5),(1,2,0),(1,3,1)]` 

then, (A + B) = `"A" = [(-1,2,3),(5,7,9),(-2,1,1)] + [(-4,1,-5),(1,2,0),(1,3,1)]`

`= [(-1 -4, 2 + 1, 3 - 5),(5 + 1, 7 + 2, 9 + 0),(-2 + 1, 1 + 3, 1 + 1)]`

`= [(-5, 3, -2),(6, 9,9),(-1,4,2)]`

Now, (A + B)' `= [(-5,6,-1),(3,9,4),(-2,9,2)]`              ...(i)

 A' = `[(-1,5,-2),(2,7,1),(3,9,1)]` and B' = `[(-4,1,1),(1,2,3),(-5,0,1)]`

then,  A' + B' = `[(-1,5,-2),(2,7,1),(3,9,1)] + [(-4,1,1),(1,2,3),(-5,0,1)]`

= `[(-1 - 4, 5 + 1, -2 + 1), (2 + 1, 7 + 2, 1 + 3), (3 - 5, 9 + 0, 1 + 1)]`

`[(-5,6,-1),(3,9,4),(-2,9,2)]`        ...(ii)

Equations (i) and (ii) prove that,

(A + B)' = A' + B'

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise 3.3 [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 3 Matrices
Exercise 3.3 | Q 2.1 | पृष्ठ ८८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×