Advertisements
Advertisements
प्रश्न
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
उत्तर
Given, `"A" = [(-1,2,3),(5,7,9),(-2,1,1)]` and B = `[(-4,1,-5),(1,2,0),(1,3,1)]`
then, (A + B) = `"A" = [(-1,2,3),(5,7,9),(-2,1,1)] + [(-4,1,-5),(1,2,0),(1,3,1)]`
`= [(-1 -4, 2 + 1, 3 - 5),(5 + 1, 7 + 2, 9 + 0),(-2 + 1, 1 + 3, 1 + 1)]`
`= [(-5, 3, -2),(6, 9,9),(-1,4,2)]`
Now, (A + B)' `= [(-5,6,-1),(3,9,4),(-2,9,2)]` ...(i)
A' = `[(-1,5,-2),(2,7,1),(3,9,1)]` and B' = `[(-4,1,1),(1,2,3),(-5,0,1)]`
then, A' + B' = `[(-1,5,-2),(2,7,1),(3,9,1)] + [(-4,1,1),(1,2,3),(-5,0,1)]`
= `[(-1 - 4, 5 + 1, -2 + 1), (2 + 1, 7 + 2, 1 + 3), (3 - 5, 9 + 0, 1 + 1)]`
`[(-5,6,-1),(3,9,4),(-2,9,2)]` ...(ii)
Equations (i) and (ii) prove that,
(A + B)' = A' + B'
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.