Advertisements
Advertisements
Question
Solution
\[Given: A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} \]
\[ \Rightarrow A^T = \begin{bmatrix}3 & 1 & - 2 \\ 2 & 4 & 5 \\ 7 & 3 & 8\end{bmatrix}\]
\[\text{Let X} = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} + \begin{bmatrix}3 & 1 & - 2 \\ 2 & 4 & 5 \\ 7 & 3 & 8\end{bmatrix} \right) = \begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{bmatrix}\]
\[\text{Let Y} = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} - \begin{bmatrix}3 & 1 & - 2 \\ 2 & 4 & 5 \\ 7 & 3 & 8\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2} \\ \frac{- 1}{2} & 0 & - 1 \\ \frac{- 9}{2} & 1 & 0\end{bmatrix}\]
\[ X^T = \begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{bmatrix}^T = \begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{bmatrix}^T = X\]
\[ Y^T = \begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2} \\ \frac{- 1}{2} & 0 & - 1 \\ \frac{- 9}{2} & 1 & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{- 1}{2} & \frac{- 9}{2} \\ \frac{1}{2} & 0 & 1 \\ \frac{9}{2} & - 1 & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2} \\ \frac{- 1}{2} & 0 & - 1 \\ \frac{- 9}{2} & 1 & 0\end{bmatrix} = Y\]
Thus, X is a symmetric matrix and Y is skew - symmetric matrix .
\[Now, \]
\[X + Y = \begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{bmatrix} + \begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2} \\ \frac{- 1}{2} & 0 & - 1 \\ \frac{- 9}{2} & 1 & 0\end{bmatrix} = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} = A\]
\[ \therefore X = \begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} & 4 & 4 \\ \frac{5}{2} & 4 & 8\end{bmatrix} \text{and Y} = \begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2} \\ \frac{- 1}{2} & 0 & - 1 \\ \frac{- 9}{2} & 1 & 0\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find matrices X and Y, if X + Y =`[[5 2],[0 9]]`
and X − Y = `[[3 6],[0 -1]]`
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
If A = `[[2 -2],[4 2],[-5 1]],B=[[8 0],[4 -2],[3 6]]`
, find matrix X such that 2A + 3X = 5B.
If 2 `[[3 4],[5 x]]+[[1 y],[0 1]]=[[7 0],[10 5]]` find x and y.
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
Addition of matrices is defined if order of the matrices is ______.
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.
If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:
If A `= [(0,2),(2,0)],` then A2 is ____________.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.