Advertisements
Advertisements
Question
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
Solution
Consider the given matrix
A = `[(cosalpha, sin alpha),(-sinalpha,cos alpha)]0<alpha<pi/2`
`A+A^T=sqrt2I_2`
`[(cosalpha, sin alpha),(-sinalpha, cos alpha)]+[(cosalpha,-sinalpha),(sinalpha,cos alpha)]=sqrt2[(1,0),(0,1)]`
`[(2cosalpha, 0),(0,2cosalpha)]=[(sqrt2,0),(0, sqrt2)]`
`2cosalpha=sqrt2`
`cosalpha=sqrt2/2=1/sqrt2`
`alpha=pi/4`
APPEARS IN
RELATED QUESTIONS
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]` show that F(x)F(y) = F(x + y)
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
Find x, y satisfying the matrix equations
`[x y + 2 z-3 ] + [ y 4 5]=[4 9 12]`
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
Matrix multiplication is ______ over addition.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.
If A `= [(0,2),(2,0)],` then A2 is ____________.