Advertisements
Advertisements
Question
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
Solution
Here,
X−Y+X+Y= `[[1,1,1],[1,1,0],[1,0,0]]+` `[[3,5,1],[-1,1,4],[11,8,0]]`
`⇒ 2X= [[1+3,1+5,1+1],[1-1,1+1 ,0+1 ],[1+11,0+8,0+0]]`
`⇒ 2X =[[4,6 ,2],[0,2,4],[12,8,0]]`
`⇒ X = 1/2 [[4 6 2],[0 2 4],[12 8 0]]`
`⇒ X=[[2 3 1],[0 1 2],[6 4 0]]`
Now,
`(X-Y)-(X+Y)=[[1 1 1],[1 1 0],[1 0 0]]`-`[[3 5 1],[-1 1 1],[11 8 0]]`
⇒X−Y−X−Y=`[[1-3 1-5 1-1 ],[1+1 1-1 0-4],[1-11 0-8 0-0]]`
⇒−2Y= `[[-2 -4 0],[2 0 -4],[-10 -8 0]]`
⇒Y=−`1/2` `[[-2 -4 0],[2 0 -4],[-10 -8 0]]`
⇒Y=`[[1 2 0],[-1 0 2],[5 4 0]]`
`∴ X= [[2 3 1],[0 1 2],[6 4 0]]` And Y = `=[[1 2 0],[-1 0 2],[5 4 0]]`
APPEARS IN
RELATED QUESTIONS
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Compute the following:
`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`
If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]` show that F(x)F(y) = F(x + y)
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
Find matrices X and Y, if X + Y =`[[5 2],[0 9]]`
and X − Y = `[[3 6],[0 -1]]`
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
Find x, y satisfying the matrix equations
`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals )
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′
If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2.
Matrix multiplication is ______ over addition.
Matrices of any order can be added.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.