Advertisements
Advertisements
Question
Solution
\[Given: A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}i^2 + 0 & 0 + 0 \\ 0 + 0 & 0 + i^2\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}i^2 & 0 \\ 0 & i^2\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}- 1 & 0 \\ 0 & - 1\end{bmatrix} \left( \because i^2 = - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
Compute the following:
`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`
Compute the following:
`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`
If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]` show that F(x)F(y) = F(x + y)
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C
If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals )
If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2.
If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.
Matrix multiplication is ______ over addition.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.