Advertisements
Advertisements
Question
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
Solution
Given: 5A+3B+2C `[[0 0],[0 0]]`
⇒5 `[[9 1],[7 8]]+ 3[[1 5],[7 12]]+2C=[[0 0],[0 0]]`
⇒ `[[45 5],[35 40]]+ [[3 15],[12 36]]+2C=[[0 0],[0 0]]`
`⇒ [[45+ 3 5+15],[35+21 40+36]]+2C[[0 0],[0 0]]`
`⇒ [[48 20],[56 76]]+2C=[[0 0],[0 0]]`
`⇒ 2C = [[0 0],[0 0]]-[[48 20],[56 76]] `
`⇒ C= 1/2 [[-48 -20],[-56 -76]]`
`⇒ [[-24 -10],[-28 -38]]`
APPEARS IN
RELATED QUESTIONS
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Compute the following:
`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`
Compute the following sums:
`[[2 1 3],[0 3 5],[-1 2 5]]`+ `[[1 -2 3],[2 6 1],[0 -3 1]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
If A = `[[2 -2],[4 2],[-5 1]],B=[[8 0],[4 -2],[3 6]]`
, find matrix X such that 2A + 3X = 5B.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
If 2 `[[3 4],[5 x]]+[[1 y],[0 1]]=[[7 0],[10 5]]` find x and y.
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
Find a matrix X such that 2A + B + X = O, where
If A = `[[8 0],[4 -2],[3 6]]` and B = `[[2 -2],[4 2],[-5 1]]`
, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I
If A = [aij] is a skew-symmetric matrix, then write the value of \[\sum_i \sum_j\] aij.
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
Addition of matrices is defined if order of the matrices is ______.
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Matrices of any order can be added.
If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is: