Advertisements
Advertisements
Question
Solution
\[Given: A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 0 + 0 & 0 + 0 + 0 & 0 + 1 + 0 \\ 0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + 0 + pq + r^2 p & rp + 0 + q^2 + r^2 q & 0 + p + rq + rq + r^3\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & rp + q^2 + r^2 q & p + 2rq + r^3\end{bmatrix} . . . \left( 1 \right)\]
\[pI + qA + r A^2 \]
\[ \Rightarrow pI + qA + r A^2 = p\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} + q\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix} + r\begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p\end{bmatrix} + \begin{bmatrix}0 & q & 0 \\ 0 & 0 & q \\ pq & q^2 & qr\end{bmatrix} + \begin{bmatrix}0 & 0 & r \\ rp & rq & r^2 \\ r^2 p & rp + r^2 q & rq + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p + 0 + 0 & 0 + q + 0 & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + pq + r^2 p & 0 + q^2 + rp + r^2 q & p + qr + qr + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & q^2 + r^2 q + rp & p + 2qr + r^3\end{bmatrix} . . . \left( 2 \right)\]
\[ \]
\[ A^3 = pI + qA + r A^2 \] [ From eqs . (1) and (2) ]
APPEARS IN
RELATED QUESTIONS
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]` show that F(x)F(y) = F(x + y)
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
Find matrices X and Y, if X + Y =`[[5 2],[0 9]]`
and X − Y = `[[3 6],[0 -1]]`
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
If 2 `[[3 4],[5 x]]+[[1 y],[0 1]]=[[7 0],[10 5]]` find x and y.
Find the value of λ, a non-zero scalar, if λ
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
If A = [aij] is a skew-symmetric matrix, then write the value of \[\sum_i \sum_j\] aij.
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
Matrix multiplication is ______ over addition.
If A `= [(0,2),(2,0)],` then A2 is ____________.
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.