English

If possible, find the sum of the matrices A and B, where A = [3123], and B = b[xyzab6] - Mathematics

Advertisements
Advertisements

Question

If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`

Sum

Solution

We have, A = `[(sqrt(3), 1),(2, 3)]_(2 xx 2)`, and B = `[(x, y, z),(a, "b", 6)]_(2 xx 3)`

Here ,A and B are of different orders.

Two matrices A and B  confirmable for addition only if order of both the matrices A and B is same.

 Hence, the sum of matrices A and B is not possible.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise [Page 53]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Exercise | Q 6 | Page 53

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A = `[[1    -3         2],[2        0               2]]`and `B = [[2          -1           -1],[1           0             -1]]` find the matrix C such that A + B + C is 

, find the matrix C such that A + B + C is zero matrix.

 

Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals ) 


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


Addition of matrices is defined if order of the matrices is ______.


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


If A `= [(0,2),(2,0)],` then A2 is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×