English

Find Matrices X And Y, If 2x − Y = `[[6 -6 0],[-4 2 1]]`And X + 2y =`[[3 2 5],[-2 1 -7 ]]` - Mathematics

Advertisements
Advertisements

Question

Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`

Sum

Solution

\[Given: \hspace{0.167em} \left( 2X - Y \right) = \begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} . . . \left( 2 \right)\]
Multiplying eq. (1) by eq. (2), we get
\[2\left( 2X - Y \right) = 2\begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix}\]
\[ \Rightarrow 4X - 2Y = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} . . . \left( 3 \right)\]
From eq. (3) and eq. (4) , we get 
\[ \left( 4X - 2Y \right) + \left( X + 2Y \right) = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} + \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}12 + 3 & - 12 + 2 & 0 + 5 \\ - 8 - 2 & 4 + 1 & 2 - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
Putting the value of X in eq . ( 2 ), we get
\[\left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix} + 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} - \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 - 3 & 2 + 2 & 5 - 1 \\ - 2 + 2 & 1 - 1 & - 7 + 1\end{bmatrix}\]
\[ \Rightarrow Y = \begin{bmatrix}0 & 2 & 2 \\ 0 & 0 & - 3\end{bmatrix}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.2 | Q 9 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


Let A = `[[-1    0    2],[3     1      4]]``B=[[0      -2     5],[1      -3     1]]``and C = [[1     -5       2],[6     0    -4 ]]`Compute2A2-3B +4C : 


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

Find xy satisfying the matrix equations

`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`


Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


Addition of matrices is defined if order of the matrices is ______.


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


Matrix multiplication is ______ over addition.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If A `= [(0,2),(2,0)],` then A2 is ____________.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×