Advertisements
Advertisements
Question
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
Solution
\[Given: \hspace{0.167em} \left( 2X - Y \right) = \begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} . . . \left( 2 \right)\]
Multiplying eq. (1) by eq. (2), we get
\[2\left( 2X - Y \right) = 2\begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix}\]
\[ \Rightarrow 4X - 2Y = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} . . . \left( 3 \right)\]
From eq. (3) and eq. (4) , we get
\[ \left( 4X - 2Y \right) + \left( X + 2Y \right) = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} + \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}12 + 3 & - 12 + 2 & 0 + 5 \\ - 8 - 2 & 4 + 1 & 2 - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
Putting the value of X in eq . ( 2 ), we get
\[\left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix} + 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} - \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 - 3 & 2 + 2 & 5 - 1 \\ - 2 + 2 & 1 - 1 & - 7 + 1\end{bmatrix}\]
\[ \Rightarrow Y = \begin{bmatrix}0 & 2 & 2 \\ 0 & 0 & - 3\end{bmatrix}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
If A = `[[2 -2],[4 2],[-5 1]],B=[[8 0],[4 -2],[3 6]]`
, find matrix X such that 2A + 3X = 5B.
Find x, y satisfying the matrix equations
`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
If A = `[[8 0],[4 -2],[3 6]]` and B = `[[2 -2],[4 2],[-5 1]]`
, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I
If A = [aij] is a skew-symmetric matrix, then write the value of \[\sum_i \sum_j\] aij.
Addition of matrices is defined if order of the matrices is ______.
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.
Matrix multiplication is ______ over addition.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.
If A `= [(0,2),(2,0)],` then A2 is ____________.
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.