Advertisements
Advertisements
प्रश्न
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
उत्तर
\[Given: \hspace{0.167em} \left( 2X - Y \right) = \begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix} . . . \left( 1 \right)\]
\[ \left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} . . . \left( 2 \right)\]
Multiplying eq. (1) by eq. (2), we get
\[2\left( 2X - Y \right) = 2\begin{bmatrix}6 & - 6 & 0 \\ - 4 & 2 & 1\end{bmatrix}\]
\[ \Rightarrow 4X - 2Y = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} . . . \left( 3 \right)\]
From eq. (3) and eq. (4) , we get
\[ \left( 4X - 2Y \right) + \left( X + 2Y \right) = \begin{bmatrix}12 & - 12 & 0 \\ - 8 & 4 & 2\end{bmatrix} + \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}12 + 3 & - 12 + 2 & 0 + 5 \\ - 8 - 2 & 4 + 1 & 2 - 7\end{bmatrix}\]
\[ \Rightarrow 5X = \begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}15 & - 10 & 5 \\ - 10 & 5 & - 5\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
Putting the value of X in eq . ( 2 ), we get
\[\left( X + 2Y \right) = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix} + 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 & 2 & 5 \\ - 2 & 1 & - 7\end{bmatrix} - \begin{bmatrix}3 & - 2 & 1 \\ - 2 & 1 & - 1\end{bmatrix}\]
\[ \Rightarrow 2Y = \begin{bmatrix}3 - 3 & 2 + 2 & 5 - 1 \\ - 2 + 2 & 1 - 1 & - 7 + 1\end{bmatrix}\]
\[ \Rightarrow Y = \begin{bmatrix}0 & 2 & 2 \\ 0 & 0 & - 3\end{bmatrix}\]
\[\]
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
Compute the following:
`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
Find a matrix X such that 2A + B + X = O, where
If A = `[[8 0],[4 -2],[3 6]]` and B = `[[2 -2],[4 2],[-5 1]]`
, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
If w is a complex cube root of unity, show that
`([[1 w w^2],[w w^2 1],[w^2 1 w]]+[[w w^2 1],[w^2 1 w],[w w^2 1]])[[1],[w],[w^2]]=[[0],[0],[0]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
Matrix multiplication is ______ over addition.
Matrices of any order can be added.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.
If A `= [(0,2),(2,0)],` then A2 is ____________.