हिंदी

Express the Matrix a = [ 3 − 4 1 − 1 ] as the Sum of a Symmetric and a Skew-symmetric Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 

योग

उत्तर

\[Given: A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] 

\[ A^T = \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix}\] 
\[Let X = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} + \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix} \right) = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix}\] 
\[ X^T = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix}^T = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix} = X\] 

\[Let Y = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} - \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix}\] 

\[ Y^T = \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{5}{2} \\ \frac{- 5}{2} & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix} = Y\] 

`"therefore X is a symmetric matrix and Y is a skew - symmetric matrix ."`

\[X + Y = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix} + \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix} = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} = A\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.5 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.5 | Q 7 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


If A = `[[1    -3         2],[2        0               2]]`and `B = [[2          -1           -1],[1           0             -1]]` find the matrix C such that A + B + C is 

, find the matrix C such that A + B + C is zero matrix.

 

Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If  \[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\] , write A2.
 

 


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


Addition of matrices is defined if order of the matrices is ______.


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


Matrix multiplication is ______ over addition.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×