हिंदी

Find X, Y, Z And T, If `3[[X Y],[Z T]]=[[X 6],[-1 2t]]+[[4 X+Y],[Z+T 3]]` - Mathematics

Advertisements
Advertisements

प्रश्न

Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 

योग

उत्तर

`3 [[x    y],[z    t]]=[[x       6],[-1      2t]]+[[4           x+y],[z+t        3]]`

`⇒ [[3x      3y],[3z       3t]]` = `[[x+ 4           6+x+y],[-1+z+t            2t+3]]`

∴ 3x=x+4  

⇒3x−x=4 

⇒2x=4     

⇒x=2

Also,

3y=6+x+y

⇒3y−y=6+x

⇒2y=6+x             ...(1)

Putting the value of x in eq. (1), we get

2y=6+2

⇒2y=8 

⇒y=4

Now,

3t=2t+3

⇒3t−2t=3

⇒t=3

3z=−1+z+t 

⇒3z−z=−1+t

⇒2z=−1+t             ...(2)  

Putting the value of t in eq. (2), we get

2z=−1+3

⇒2z=2

⇒ z=1

∴ x=2, y=4, z=1 and t=3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.2 | Q 19.1 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following:

`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (xy).

 

Addition of matrices is defined if order of the matrices is ______.


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×