हिंदी

If X ( 2 3 ) + Y ( − 1 1 ) = ( 10 5 ) , Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.

योग

उत्तर

` x[[ 2],[3]] +y [[- 1],[1]] = [[10],[5]]` 

`[[2x - y ] , [3x + y] ]`=` [[10 ] , [ 5]]`

Corresponding elements of equal matrices are equal . 

\[ \Rightarrow 2x - y = \text{10 and } 3x + y = 5\] 

\[ \Rightarrow y =\text{2x - 10 and }3x + \left( 2x - 10 \right) = 5\] 

\[ \Rightarrow y = \text{2x - 10 and }5x = 15\] 

\[ \Rightarrow y = \text{2x - 10 and }x = 3\] 

\[ \Rightarrow y = 2\left( 3 \right) - \text{10 and }x = 3\] 

\[ \Rightarrow y = \text{- 4 and}x = 3\] 

\[ \therefore x = \text{3 and y }= - 4 .\]

Hence, the value of x is 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 51 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

Find xy satisfying the matrix equations

`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find the value of λ, a non-zero scalar, if λ


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\] , write A2.
 

 


If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


Matrices of any order can be added.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×