हिंदी

Compute the Following Sums: `[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]` - Mathematics

Advertisements
Advertisements

प्रश्न

Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`

उत्तर

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`

`⇒[[3-2           -2+4],[1+1                     4+3]]`

`⇒[[1  2],[2   7]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.2 | Q 1.1 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


If A = `[[1    -3         2],[2        0               2]]`and `B = [[2          -1           -1],[1           0             -1]]` find the matrix C such that A + B + C is 

, find the matrix C such that A + B + C is zero matrix.

 

If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals ) 


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


Matrix multiplication is ______ over addition.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×