हिंदी

If A = [10-1213011], then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.

योग

उत्तर

We have, A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`

∴ A2 = A · A

= `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(1, 0, -1),(2, 1, 3),(0, 1, 1)]`

= `[(1 + 0 + 0, 0 + 0 - 1, -1 + 0 - 1),(2 + 2 + 0, 0 + 1 + 3, -2 + 3 + 3),(0 + 2 + 0, 0 + 1 + 1, 0 + 3 + 1)]`

= `[(1, -1, -2),(4, 4, 4),(2, 2, 4)]`

∴ A2 + A = `[(1, -1, -2),(4, 4, 4),(2, 2, 4)] + [(1, 0, -4),(2, 1, 3),(0, 1, 1)]`

= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]`  ......(i)

Now, A + I = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] + [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

= `[(2, 0, -1),(2, 2, 3),(0, 1, 2)]`

So, A(A + I) = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(2, 0, -1),(2, 2, 3),(0, 1, 2)]`

= `[(2 + 0 + 0, 0 + 0 - 1, -1 + 0 - 2),(4 + 2 + 0, 0 + 2 + 3, -2 + 3 + 6),(0 + 2 + 0, 0 + 2 + 1, 0 + 3 + 2)]`

= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]`  .....(iii)

From (i) and (ii)

We get A2 + A = A(A + I)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 26 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


If A =`[[9     1],[7      8]],B=[[1      5],[7      12]]`find matrix C such that 5A + 3B + 2C is a null matrix.


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`


Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals ) 


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If A `= [(0,2),(2,0)],` then A2 is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×