मराठी

If A = [10-1213011], then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.

बेरीज

उत्तर

We have, A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`

∴ A2 = A · A

= `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(1, 0, -1),(2, 1, 3),(0, 1, 1)]`

= `[(1 + 0 + 0, 0 + 0 - 1, -1 + 0 - 1),(2 + 2 + 0, 0 + 1 + 3, -2 + 3 + 3),(0 + 2 + 0, 0 + 1 + 1, 0 + 3 + 1)]`

= `[(1, -1, -2),(4, 4, 4),(2, 2, 4)]`

∴ A2 + A = `[(1, -1, -2),(4, 4, 4),(2, 2, 4)] + [(1, 0, -4),(2, 1, 3),(0, 1, 1)]`

= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]`  ......(i)

Now, A + I = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] + [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

= `[(2, 0, -1),(2, 2, 3),(0, 1, 2)]`

So, A(A + I) = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(2, 0, -1),(2, 2, 3),(0, 1, 2)]`

= `[(2 + 0 + 0, 0 + 0 - 1, -1 + 0 - 2),(4 + 2 + 0, 0 + 2 + 3, -2 + 3 + 6),(0 + 2 + 0, 0 + 2 + 1, 0 + 3 + 2)]`

= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]`  .....(iii)

From (i) and (ii)

We get A2 + A = A(A + I)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 26 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2


Matrix multiplication is ______ over addition.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×