मराठी

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y. 2X+3Y=[2340],3X+2Y=[-221-5] - Mathematics

Advertisements
Advertisements

प्रश्न

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`

बेरीज

उत्तर

We have,

3(2X+3Y)−2(3X+2Y)=3 `[[2,3],[4,0]]-2 [[-2,2],[1,-5]]`

⇒6X+9Y−6X−4Y= `3[[6,9],[4,0]]+[[4,-4],[-2,10]]`

⇒5Y= `[[6+4,9-4],[12-2,0+10]]`

⇒Y=`1/5 [[10,5],[10,10]]`

⇒Y=`[[2,1],[2,2]]`.............................(1)

Also,

2(2X+3Y)−3(3X+2Y)=2 `[[2,3],[4,0]]-3[[-2,2],[1,-5]]`

⇒4X+6Y−9X−6Y=`[[4,6],[8,0]]+[[6,-6],[-3,15]]`

⇒−5X= `[[6+4,6-6],[8-3,0+15]]`

⇒X=`1/-5[[10,0],[5,15]]`

⇒X= `[[-2,0],[-1,-3]]`...................(2)

From (1) and (2), we get

`X=[[-2,0],[-1,-3]]` And  `Y= [[2,1],[2,2]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.2 | Q 20 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C


Let A = `[[-1    0    2],[3     1      4]]``B=[[0      -2     5],[1      -3     1]]``and C = [[1     -5       2],[6     0    -4 ]]`Compute2A2-3B +4C : 


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find xy satisfying the matrix equations

`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If  \[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\] , write A2.
 

 


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


If A `= [(0,2),(2,0)],` then A2 is ____________.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×