Advertisements
Advertisements
प्रश्न
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
उत्तर
`A=[[1,2,2],[2,1,2],[2,2,1]]`
`A^2=[[1,2,2],[2,1,2],[2,2,1]][[1,2,2],[2,1,2],[2,2,1]]`
`=[[1xx1+2xx2+2xx2,1xx2+2xx2+2xx2,1xx2+2xx2+2xx1],[2xx1+1xx2+2xx2,2xx2+1xx1+2xx2,2xx2+1xx2+2xx1],[2xx1+2xx2+1xx2,2xx2+2xx1+1xx2,2xx2+2xx2+1xx1]]`
`=[[1+4+4,2+2+4,2+4+2],[2+2+4,4+1+4,4+2+2],[2+4+2,4+2+2,4+4+1]]`
`=[[9,8,8],[8,9,8],[8,8,9]]`
consider A2-4A-5I
`=[[9,8,8],[8,9,8],[8,8,9]]-4[[1,2,2],[2,1,2],[2,2,1]]-5[[1,0,0],[0,1,0],[0,0,1]]`
`=[[9,8,8],[8,9,8],[8,8,9]]-[[4,8,8],[8,4,8],[8,8,4]]-[[5,0,0],[0,5,0],[0,0,5]]`
`=[[9-9,8-8,8-8],[8-8,9-9,8-8],[8-8,8-8,9-9]]`
`=[[0,0,0],[0,0,0],[0,0,0]]`
Now
A2-4A-5I=0
A2-4A=5I
`A^2A^(-1)-4A.A^(-1)=5IA^(-1)` (Postmultiply by A-1)
A-4I=5A-1
`[[1,2,2],[2,1,2],[2,2,1]]-[[4,0,0],[0,4,0],[0,0,4]]=5A^-1`
`[[-3,2,2],[2,-3,2],[2,2,-3]]=5A^(-1)`
`A^-1 =[[-3/5,2/5,2/5],[2/5,-3/5,2/5],[2/5,2/5,-3/5]]`
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Compute the following:
`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`
Compute the following:
`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
Find x, y satisfying the matrix equations
`[x y + 2 z-3 ] + [ y 4 5]=[4 9 12]`
Find x, y satisfying the matrix equations
`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`
Find the value of λ, a non-zero scalar, if λ
Find a matrix X such that 2A + B + X = O, where
`A= [[-1 2],[3 4]],B= [[3 -2],[1 5]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.
If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is: