मराठी

If A=[[1,2,2],[2,1,2],[2,2,1]] ,then show that A^2-4A-5I=0 and hence find A^-1. - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.

उत्तर

`A=[[1,2,2],[2,1,2],[2,2,1]]`

`A^2=[[1,2,2],[2,1,2],[2,2,1]][[1,2,2],[2,1,2],[2,2,1]]`

`=[[1xx1+2xx2+2xx2,1xx2+2xx2+2xx2,1xx2+2xx2+2xx1],[2xx1+1xx2+2xx2,2xx2+1xx1+2xx2,2xx2+1xx2+2xx1],[2xx1+2xx2+1xx2,2xx2+2xx1+1xx2,2xx2+2xx2+1xx1]]`

`=[[1+4+4,2+2+4,2+4+2],[2+2+4,4+1+4,4+2+2],[2+4+2,4+2+2,4+4+1]]`

`=[[9,8,8],[8,9,8],[8,8,9]]`

consider A2-4A-5I

`=[[9,8,8],[8,9,8],[8,8,9]]-4[[1,2,2],[2,1,2],[2,2,1]]-5[[1,0,0],[0,1,0],[0,0,1]]`

`=[[9,8,8],[8,9,8],[8,8,9]]-[[4,8,8],[8,4,8],[8,8,4]]-[[5,0,0],[0,5,0],[0,0,5]]`

`=[[9-9,8-8,8-8],[8-8,9-9,8-8],[8-8,8-8,9-9]]`

`=[[0,0,0],[0,0,0],[0,0,0]]`

Now

A2-4A-5I=0

A2-4A=5I

`A^2A^(-1)-4A.A^(-1)=5IA^(-1)` (Postmultiply by A-1)

A-4I=5A-1

`[[1,2,2],[2,1,2],[2,2,1]]-[[4,0,0],[0,4,0],[0,0,4]]=5A^-1`

`[[-3,2,2],[2,-3,2],[2,2,-3]]=5A^(-1)`

`A^-1 =[[-3/5,2/5,2/5],[2/5,-3/5,2/5],[2/5,2/5,-3/5]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Panchkula Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following:

`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find xy satisfying the matrix equations

`x[[2],[1]]+y[[3],[5]]+[[-8],[-11]]=0`


Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where

`A= [[-1      2],[3        4]],B= [[3       -2],[1          5]]`


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\] , write A2.
 

 


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×