Advertisements
Advertisements
प्रश्न
उत्तर
\[Given: A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 0 + 0 & 0 + 0 + 0 & 0 + 1 + 0 \\ 0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + 0 + pq + r^2 p & rp + 0 + q^2 + r^2 q & 0 + p + rq + rq + r^3\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & rp + q^2 + r^2 q & p + 2rq + r^3\end{bmatrix} . . . \left( 1 \right)\]
\[pI + qA + r A^2 \]
\[ \Rightarrow pI + qA + r A^2 = p\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} + q\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix} + r\begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p\end{bmatrix} + \begin{bmatrix}0 & q & 0 \\ 0 & 0 & q \\ pq & q^2 & qr\end{bmatrix} + \begin{bmatrix}0 & 0 & r \\ rp & rq & r^2 \\ r^2 p & rp + r^2 q & rq + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p + 0 + 0 & 0 + q + 0 & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + pq + r^2 p & 0 + q^2 + rp + r^2 q & p + qr + qr + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & q^2 + r^2 q + rp & p + 2qr + r^3\end{bmatrix} . . . \left( 2 \right)\]
\[ \]
\[ A^3 = pI + qA + r A^2 \] [ From eqs . (1) and (2) ]
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
Compute the following:
`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`
Compute the following:
`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`
Compute the following sums:
`[[3 -2],[1 4]]+ [[-2 4 ],[1 3]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C
If A =`[[2 3],[5 7]],B =` `[[-1 0 2],[3 4 1]]`,`C= [[-1 2 3],[2 1 0]]`find
2B + 3A and 3C − 4B
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
2A + 3B − 5C
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
If A = `[[2 -2],[4 2],[-5 1]],B=[[8 0],[4 -2],[3 6]]`
, find matrix X such that 2A + 3X = 5B.
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
Find x, y, z and t, if
`2[[x 5],[z t]]+[[x 6],[-1 2t]]=[[7 14],[15 14]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals )
The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2.
Matrix multiplication is ______ over addition.
Matrices of any order can be added.
If A `= [(0,2),(2,0)],` then A2 is ____________.
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.