मराठी

If A= `[[0 1 0],[0 0 1],[P Q R]]` And I is the Identity Matrix of Order 3, Show That A3 = Pi + Qa +Ra2 - Mathematics

Advertisements
Advertisements

प्रश्न

 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.
बेरीज

उत्तर

\[Given: A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 0 + 0 & 0 + 0 + 0 & 0 + 1 + 0 \\ 0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + 0 + pq + r^2 p & rp + 0 + q^2 + r^2 q & 0 + p + rq + rq + r^3\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & rp + q^2 + r^2 q & p + 2rq + r^3\end{bmatrix} . . . \left( 1 \right)\]
\[pI + qA + r A^2 \]
\[ \Rightarrow pI + qA + r A^2 = p\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} + q\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix} + r\begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p\end{bmatrix} + \begin{bmatrix}0 & q & 0 \\ 0 & 0 & q \\ pq & q^2 & qr\end{bmatrix} + \begin{bmatrix}0 & 0 & r \\ rp & rq & r^2 \\ r^2 p & rp + r^2 q & rq + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p + 0 + 0 & 0 + q + 0 & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + pq + r^2 p & 0 + q^2 + rp + r^2 q & p + qr + qr + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & q^2 + r^2 q + rp & p + 2qr + r^3\end{bmatrix} . . . \left( 2 \right)\]
\[ \]
\[ A^3 = pI + qA + r A^2 \] [ From eqs . (1) and (2) ]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 20 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


Find xyz and t, if

`2[[x         5],[z         t]]+[[x           6],[-1          2t]]=[[7            14],[15        14]]`


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If  \[A = \begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix}\] , write A2.
 

 


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


If  \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (xy).

 

If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals ) 


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C


If A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` and x2 = –1, then show that (A + B)2 = A2 + B2


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If A `= [(0,2),(2,0)],` then A2 is ____________.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×