मराठी

Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`And `C =[[-2,5],[3,4]]`.Find Each of the Following: 3a − 2b + 3c - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C

बेरीज

उत्तर

`3A-2B+3C`

⇒ 3A−2B+3C=3 `[[2   4],[3   2]]-2[[1    3],[-2    5]]+3[[-2    5],[3    4]]`

⇒ 3A−2B+3C=`[[6   12],[9    6]]-[[2    6],[-4    10]]+[[-6     15],[9     12]]`

⇒ 3A−2B+3C=`[[6-2-6        12-6+15],[9+4+9          6-10+12]]`

⇒ 3A−2B+3C=`[[-2         21],[22         8]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.2 | Q 2.4 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if  `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6=  ......................


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


If A =`[[2   3],[5   7]],B =` `[[-1   0   2],[3    4      1]]`,`C= [[-1    2   3],[2    1     0]]`find

2B + 3A and 3C − 4B


Let A = `[[-1    0    2],[3     1      4]]``B=[[0      -2     5],[1      -3     1]]``and C = [[1     -5       2],[6     0    -4 ]]`Compute2A2-3B +4C : 


Find matrices X and Y, if 2X − Y = `[[6       -6           0],[-4            2           1]]`and X + 2Y =`[[3              2                     5],[-2         1    -7 ]]`


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

If A = `[[1    -3         2],[2        0               2]]`and `B = [[2          -1           -1],[1           0             -1]]` find the matrix C such that A + B + C is 

, find the matrix C such that A + B + C is zero matrix.

 

Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If \[A = \begin{bmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{bmatrix}\] , find x satisfying 0 < x < \[\frac{\pi}{2}\] when A + AT = I


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals ) 


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


Addition of matrices is defined if order of the matrices is ______.


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Matrix multiplication is ______ over addition.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×