Advertisements
Advertisements
प्रश्न
If \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).
उत्तर
\[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\]
Corresponding elements of equal matrices are equal .
∴ z + 6 = 0 and x + y = 6
⇒z = - 6 and x + y = 6
∴ Therefore, x + y + z = 6 - 6 = 0 .
APPEARS IN
संबंधित प्रश्न
Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that A2 - 5A + 4I + X = 0
If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]` show that F(x)F(y) = F(x + y)
Compute the following sums:
`[[2 1 3],[0 3 5],[-1 2 5]]`+ `[[1 -2 3],[2 6 1],[0 -3 1]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: B − 4C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
Find x, y satisfying the matrix equations
`[[X-Y 2 -2],[4 x 6]]+[[3 -2 2],[1 0 -1]]=[[ 6 0 0],[ 5 2x+y 5]]`
Find x, y satisfying the matrix equations
`[x y + 2 z-3 ] + [ y 4 5]=[4 9 12]`
Find the value of λ, a non-zero scalar, if λ
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If A = [aij] is a skew-symmetric matrix, then write the value of \[\sum_i \sum_j\] aij.
Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]
If \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.
Addition of matrices is defined if order of the matrices is ______.
If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
Matrix multiplication is ______ over addition.
Matrices of any order can be added.
If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.