मराठी

If [ X Y 4 Z + 6 X + Y ] = [ 8 W 0 6 ] , Write the Value of (X + Y + Z). - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).

बेरीज

उत्तर

\[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\]

Corresponding elements of equal matrices are equal . 

∴ z + 6 =  0 and x + y = 6

⇒z = - 6 and x + y = 6 

∴ Therefore, x + y + z = 6 - 6 = 0 .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.6 | Q 61 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


Let A = `[[-1    0    2],[3     1      4]]``B=[[0      -2     5],[1      -3     1]]``and C = [[1     -5       2],[6     0    -4 ]]`Compute2A2-3B +4C : 


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


Find xy satisfying the matrix equations

`[x     y + 2    z-3 ] +  [  y       4          5]=[4        9        12]`


Find the value of λ, a non-zero scalar, if λ


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


Addition of matrices is defined if order of the matrices is ______.


If possible, find the sum of the matrices A and B, where A = `[(sqrt(3), 1),(2, 3)]`, and B = `[(x, y, z),(a, "b", 6)]`


If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×