मराठी

If A = [12-21], B = [233-4] and C = [10-10], verify: A(B + C) = AB + AC - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC

बेरीज

उत्तर

We have, A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`

B + C = `[(2, 3),(3, -4)] + [(1, 0),(-1, 0)]`

= `[(3, 3),(2, -4)]`

⇒ A · (B + C) = `[(1, 2),(-2, 1)] [(3, 3),(2, -4)]`

= `[(3 + 4, 3 - 8),(-6 + 2, -6 - 4)]`

= `[(7, -5),(-4, -10)]`  .....(iii)

AB = `[(1, 2),(-2, 1)] [(2, 3),(3, -4)]`

= `[(2 + 6, 3 - 8),(-4 + 3, -6 - 4)]`

= `[(8, -5),(-1, -10)]`

And AC = `[(1, 2),(-2, 1)] [(1, 0),(-1, 0)]`

= `[(1 - 2, 0),(-2 - 1, 0)]`

= `[(-1, 0),(-3, 0)]`

∴ AB + AC = `[(8, -5),(-1, -10)] + [(-1, 0),(-3, 0)]` 

= `[(7, -5),(-4, -10)]`  ......(iv)

From equations (iii) and (iv), we get

A · (B + C) = A · B+ A · C

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 22. (ii) | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.


Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find  A + B


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


Compute the following:

`[(cos^2x, sin^2 x),(sin^2 x ,cos^2 x)]+[(sin^2 x, cos^2 x), (cos^2 x, sin^2 x)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following:  B − 4C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


If  \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (xy).

 

Addition of matrices is defined if order of the matrices is ______.


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


Matrix multiplication is ______ over addition.


Matrices of any order can be added.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


If A `= [(0,2),(2,0)],` then A2 is ____________.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×