मराठी

Express the Matrix a = [ 3 − 4 1 − 1 ] as the Sum of a Symmetric and a Skew-symmetric Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\]  as the sum of a symmetric and a skew-symmetric matrix.

 

 

बेरीज

उत्तर

\[Given: A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] 

\[ A^T = \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix}\] 
\[Let X = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} + \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix} \right) = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix}\] 
\[ X^T = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix}^T = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix} = X\] 

\[Let Y = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} - \begin{bmatrix}3 & 1 \\ - 4 & - 1\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix}\] 

\[ Y^T = \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{5}{2} \\ \frac{- 5}{2} & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix} = Y\] 

`"therefore X is a symmetric matrix and Y is a skew - symmetric matrix ."`

\[X + Y = \begin{bmatrix}3 & \frac{- 3}{2} \\ \frac{- 3}{2} & - 1\end{bmatrix} + \begin{bmatrix}0 & \frac{- 5}{2} \\ \frac{5}{2} & 0\end{bmatrix} = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix} = A\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.5 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.5 | Q 7 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Solve the following matrix equation for x: `[x 1] [[1,0],[−2,0]]=0`


If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.


If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0


Compute the following:

`[(a,b),(-b, a)] + [(a,b),(b,a)]`


Compute the following:

`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`


Compute the following: 

`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`


If F(x) = `[(cosx, -sinx,0), (sinx, cosx, 0),(0,0,1)]`  show that F(x)F(y) = F(x + y)


Compute the following sums:

`[[3   -2],[1           4]]+ [[-2         4 ],[1           3]]`


Compute the following sums:

`[[2    1   3],[0   3   5],[-1   2   5]]`+ `[[1 -2     3],[2            6        1],[0   -3       1]]`


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C


If A =`[[2,3],[5,7]],B =` `[[-1,0 ,2],[3,4,1]]`,`C= [[-1,2,3],[2,1,0]]`find : A + B and B + C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

2A + 3B − 5C


Find X if Y =`[[3       2],[1      4]]`and 2X + Y =`[[1       0],[-3        2]]`


Find xy satisfying the matrix equations

`[[X-Y               2            -2],[4                        x                6]]+[[3        -2                2],[1         0            -1]]=[[                6                       0                             0],[         5                       2x+y                5]]`


If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

`2X + 3Y = [[2,3],[4,0]], 3X+2Y = [[-2,2],[1,-5]]`


 

\[A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\] ,and I is the identity matrix of order 3, show that A3 = pI + qA +rA2.

If w is a complex cube root of unity, show that

`([[1         w          w^2],[w            w^2             1],[w^2           1             w]]+[[w          w^2          1],[w^2             1               w],[w            w^2              1]])[[1],[w],[w^2]]=[[0],[0],[0]]`


Define a symmetric matrix. Prove that for
\[A = \begin{bmatrix}2 & 4 \\ 5 & 6\end{bmatrix}\], A + AT is a symmetric matrix where AT is the transpose of A.
 

 


If  \[A = \begin{bmatrix}2 & 3 \\ 5 & 7\end{bmatrix}\] , find A + AT.
 

 


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


If  \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.


The trace of the matrix \[A = \begin{bmatrix}1 & - 5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{bmatrix}\], is


Addition of matrices is defined if order of the matrices is ______.


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`, then verify that A2 + A = A(A + I), where I is 3 × 3 unit matrix.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C


Matrices of any order can be added.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If `[(2"a"+"b", "a"-2"b"),(5"c" - "d", 4"c"+3"d")] = [(4, -3),(11, 24)]`, then value of a + b – c + 2d is:


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×