Advertisements
Advertisements
प्रश्न
उत्तर
\[Given: A = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 0 + 0 & 0 + 0 + 0 & 0 + 1 + 0 \\ 0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 + 0 + p & 0 + 0 + q & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + 0 + pq + r^2 p & rp + 0 + q^2 + r^2 q & 0 + p + rq + rq + r^3\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & rp + q^2 + r^2 q & p + 2rq + r^3\end{bmatrix} . . . \left( 1 \right)\]
\[pI + qA + r A^2 \]
\[ \Rightarrow pI + qA + r A^2 = p\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} + q\begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{bmatrix} + r\begin{bmatrix}0 & 0 & 1 \\ p & q & r \\ rp & p + rq & q + r^2\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p\end{bmatrix} + \begin{bmatrix}0 & q & 0 \\ 0 & 0 & q \\ pq & q^2 & qr\end{bmatrix} + \begin{bmatrix}0 & 0 & r \\ rp & rq & r^2 \\ r^2 p & rp + r^2 q & rq + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p + 0 + 0 & 0 + q + 0 & 0 + 0 + r \\ 0 + 0 + rp & p + 0 + rq & 0 + q + r^2 \\ 0 + pq + r^2 p & 0 + q^2 + rp + r^2 q & p + qr + qr + r^3\end{bmatrix}\]
\[ \Rightarrow pI + qA + r A^2 = \begin{bmatrix}p & q & r \\ rp & p + rq & q + r^2 \\ pq + r^2 p & q^2 + r^2 q + rp & p + 2qr + r^3\end{bmatrix} . . . \left( 2 \right)\]
\[ \]
\[ A^3 = pI + qA + r A^2 \] [ From eqs . (1) and (2) ]
APPEARS IN
संबंधित प्रश्न
if `A=[[2,0,0],[0,2,0],[0,0,2]]` then A6= ......................
If A = `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.
If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find A + B
Compute the following:
`[(a,b),(-b, a)] + [(a,b),(b,a)]`
Compute the following:
`[(a^2+b^2, b^2+c^2),(a^2+c^2, a^2+b^2)] + [(2ab , 2bc),(-2ac, -2ab)]`
Compute the following:
`[(-1,4, -6),(8,5,16),(2,8,5)] + [(12,7,6),(8,0,5),(3,2,4)]`
Compute the following sums:
`[[2 1 3],[0 3 5],[-1 2 5]]`+ `[[1 -2 3],[2 6 1],[0 -3 1]]`
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B
Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − C
Let A = `[[-1 0 2],[3 1 4]]``B=[[0 -2 5],[1 -3 1]]``and C = [[1 -5 2],[6 0 -4 ]]`Compute2A2-3B +4C :
If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find
B + C − 2A
Find matrices X and Y, if X + Y =`[[5 2],[0 9]]`
and X − Y = `[[3 6],[0 -1]]`
Find X if Y =`[[3 2],[1 4]]`and 2X + Y =`[[1 0],[-3 2]]`
Find matrices X and Y, if 2X − Y = `[[6 -6 0],[-4 2 1]]`and X + 2Y =`[[3 2 5],[-2 1 -7 ]]`
f X − Y =`[[1 1 1],[1 1 0],[1 0 0]]` and X + Y = `[[3 5 1],[-1 1 1],[11 8 0]]`find X and Y.
If A =`[[9 1],[7 8]],B=[[1 5],[7 12]]`find matrix C such that 5A + 3B + 2C is a null matrix.
If A = `[[1 -3 2],[2 0 2]]`and `B = [[2 -1 -1],[1 0 -1]]` find the matrix C such that A + B + C is
, find the matrix C such that A + B + C is zero matrix.
Find the value of λ, a non-zero scalar, if λ
Find x, y, z and t, if
`3[[x y],[z t]]=[[x 6],[-1 2t]]+[[4 x+y],[z+t 3]]`
Express the matrix \[A = \begin{bmatrix}3 & - 4 \\ 1 & - 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
If \[x\binom{2}{3} + y\binom{ - 1}{1} = \binom{10}{5}\] , find the value of x.
If \[\binom{x + y}{x - y} = \begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\binom{1}{ - 2}\] , then write the value of (x, y).
If \[I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, J = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} and B = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\] then B equals )
If A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` and C = `[(1, 0),(-1, 0)]`, verify: A(B + C) = AB + AC
If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A + (B + C) = (A + B) + C
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB
If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.
Matrix multiplication is ______ over addition.
`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.