हिंदी

If A=[[1,2,2],[2,1,2],[2,2,1]] ,then show that A^2-4A-5I=0 and hence find A^-1. - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=[[1,2,2],[2,1,2],[2,2,1]]` ,then show that `A^2-4A-5I=0` and hence find A-1.

उत्तर

`A=[[1,2,2],[2,1,2],[2,2,1]]`

`A^2=[[1,2,2],[2,1,2],[2,2,1]][[1,2,2],[2,1,2],[2,2,1]]`

`=[[1xx1+2xx2+2xx2,1xx2+2xx2+2xx2,1xx2+2xx2+2xx1],[2xx1+1xx2+2xx2,2xx2+1xx1+2xx2,2xx2+1xx2+2xx1],[2xx1+2xx2+1xx2,2xx2+2xx1+1xx2,2xx2+2xx2+1xx1]]`

`=[[1+4+4,2+2+4,2+4+2],[2+2+4,4+1+4,4+2+2],[2+4+2,4+2+2,4+4+1]]`

`=[[9,8,8],[8,9,8],[8,8,9]]`

consider A2-4A-5I

`=[[9,8,8],[8,9,8],[8,8,9]]-4[[1,2,2],[2,1,2],[2,2,1]]-5[[1,0,0],[0,1,0],[0,0,1]]`

`=[[9,8,8],[8,9,8],[8,8,9]]-[[4,8,8],[8,4,8],[8,8,4]]-[[5,0,0],[0,5,0],[0,0,5]]`

`=[[9-9,8-8,8-8],[8-8,9-9,8-8],[8-8,8-8,9-9]]`

`=[[0,0,0],[0,0,0],[0,0,0]]`

Now

A2-4A-5I=0

A2-4A=5I

`A^2A^(-1)-4A.A^(-1)=5IA^(-1)` (Postmultiply by A-1)

A-4I=5A-1

`[[1,2,2],[2,1,2],[2,2,1]]-[[4,0,0],[0,4,0],[0,0,4]]=5A^-1`

`[[-3,2,2],[2,-3,2],[2,2,-3]]=5A^(-1)`

`A^-1 =[[-3/5,2/5,2/5],[2/5,-3/5,2/5],[2/5,2/5,-3/5]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A =  `([cos alpha, sin alpha],[-sinalpha, cos alpha])` , find α satisfying 0 < α < `pi/r`when `A+A^T=sqrt2I_2` where AT is transpose of A.


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 2A − 3B


Let A = `[[2,4],[3,2]]`, `B=[[1,3],[-2,5]]`and `c =[[-2,5],[3,4]]`.Find each of the following: 3A − 2B + 3C


If A = diag (2 − 59), B = diag (11 − 4) and C = diag (−6 3 4), find

B + C − 2A


Find matrices X and Y, if X + Y =`[[5     2],[0       9]]`

and X − Y =  `[[3       6],[0   -1]]`

 


X − Y =`[[1      1       1],[1        1          0],[1         0          0]]` and X + Y = `[[3        5         1],[-1       1           1],[11       8           0]]`find X and Y.


If A = `[[2      -2],[4             2],[-5          1]],B=[[8             0],[4      -2],[3          6]]`

, find matrix X such that 2A + 3X = 5B.

 

If A = `[[1    -3         2],[2        0               2]]`and `B = [[2          -1           -1],[1           0             -1]]` find the matrix C such that A + B + C is 

, find the matrix C such that A + B + C is zero matrix.

 

If 2 `[[3    4],[5     x]]+[[1   y],[0    1]]=[[7        0],[10      5]]` find x and y.


Find the value of λ, a non-zero scalar, if λ


Find a matrix X such that 2A + B + X = O, where 

 If A = `[[8            0],[4    -2],[3         6]]` and B = `[[2       -2],[4           2],[-5          1]]`

, then find the matrix X of order 3 × 2 such that 2A + 3X = 5B.

 

Find xyz and t, if

`3[[x     y],[z      t]]=[[x        6],[-1          2t]]+[[4             x+y],[z+t         3]]`

 


 Let  \[A = \begin{bmatrix}3 & 2 & 7 \\ 1 & 4 & 3 \\ - 2 & 5 & 8\end{bmatrix} .\] Find matrices X and Y such that X + Y = A, where X is a symmetric and Y is a skew-symmetric matrix

 


If A = [aij] is a skew-symmetric matrix, then write the value of  \[\sum_i \sum_j\]  aij.


Find the values of x and y, if \[2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}\]


If  \[2\begin{bmatrix}3 & 4 \\ 5 & x\end{bmatrix} + \begin{bmatrix}1 & y \\ 0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0 \\ 10 & 5\end{bmatrix}\] , find x − y.

 

 


If  \[\begin{bmatrix}xy & 4 \\ z + 6 & x + y\end{bmatrix} = \begin{bmatrix}8 & w \\ 0 & 6\end{bmatrix}\] , write the value of (x + y + z).


Addition of matrices is defined if order of the matrices is ______.


If A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` and C = `[(-1, 2, 1),(1, 0, 2)]`, verify that A(B + C) = (AB + AC).


If A = `[(1, 2),(4, 1),(5, 6)]` B = `[(1, 2),(6, 4),(7, 3)]`, then verify that: (2A + B)′ = 2A′ + B′


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: (a + b)B = aB + bB


If A = `[(1, 2),(4, 1)]`, find A2 + 2A + 7I.


`"A" = [(1,-1),(2,-1)], "B" = [("x", 1),("y", -1)]` and (A + B)2 = A2 + B2, then x + y = ____________.


If A `= [(0,2),(2,0)],` then A2 is ____________.


If a2 + b2 + c2 = –2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, (1 + c^2)x)|` then f(x) is a polynomial of degree ______.


Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×