हिंदी

If A=|[2,0,-1],[5,1,0],[0,1,3]| , then find A-1 using elementary row operations - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations

उत्तर

`|A|=|[2,0,1],[5,1,0],[0,1,3]|`

=2(3-0)-0(15-0)-1(5-0)

=6-0-5

=1

≠0

Hence A-1 exists.

A-1A=1

`A^(-1)[[2,0,-1],[5,1,0],[0,1,3]]=[[1,0,0],[0,1,0],[0,0,1]]`

Applying `R_1 ->(1/2)R_1`

`A^(-1)[[1,0,-1/2],[5,1,0],[0,1,3]]=[[1/2,0,0],[0,1,0],[0,0,1]]`

Applying `R_2->R_2+(-5)R_1`

`A^(-1)[[1,0,-1/2],[0,1,5/2],[0,1,3]]=[[1/2,0,0],[-5/2,1,0],[0,0,1]]`

Applying `R_3->R3+(-1)R_2`

`A^(-1)[[1,0,-1/2],[0,1,5/2],[0,0,1/2]]=[[1/2,0,0],[-5/2,1,0],[5/2,-1,1]]`

Applying `R_3->(2)R_3`

`A^(-1)[[1,0,-1/2],[0,1,5/2],[0,0,1]]=[[1/2,0,0],[-5/2,1,0],[5/2,-1,2]]`

Applying `R_1->R_1+(1/2)R_3 and R_2->R_2+(-5/2)R_3`

`A^(-1)[[1,0,0],[0,1,0],[0,0,1]]=[[3,-1,1],[-15,6,-5],[5,-2,2]]`

`A^-1 =[[3,-1,1],[-15,6,-5],[5,-2,2]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.


For what values of k, the system of linear equations

x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4

has a unique solution?

 


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Solve the following :

If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.


If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


The inverse of a symmetric matrix is ______.


If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12 


Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find the matrix A satisfying the matrix equation:

`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.


A matrix denotes a number.


Two matrices are equal if they have same number of rows and same number of columns.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


if `A = [(2,5),(1,3)] "then" A^-1` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×