हिंदी

2x − 3z + W = 1 X − Y + 2w = 1 − 3y + Z + W = 1 X + Y + Z = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1

उत्तर

\[D = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[2\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 0\left( 0 + 3 \right) \right]\] 
\[ = - 21\] 
\[ D_1 = \begin{vmatrix}1 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 1 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[1\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 1 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 1 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 1\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right]\] 
\[ = - 21\] 
\[ D_2 = \begin{vmatrix}2 & 1 & - 3 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[ = 2\begin{vmatrix}1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} + ( - 3)\begin{vmatrix}1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[2\left[ 1\left( 0 - 1 \right) + 2\left( 1 - 1 \right) \right] - 1\left[ 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 1\left[ 1\left( 1 - 1 \right) - 1\left( 0 - 1 \right) \right]\] 
\[ = 6\] 
\[ D_3 = \begin{vmatrix}2 & 0 & 1 & 1 \\ 1 & - 1 & 1 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[ = 2\begin{vmatrix}- 1 & 1 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 + 1\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] + 1\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right]\] 
\[ = - 6\] 
\[ D_4 = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 1 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\begin{vmatrix}- 1 & 0 & 1 \\ - 3 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 1 - 1 \right) + 1\left( - 3 - 1 \right) \right] - 3\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) \right]\] 
\[ = 3\] 
So, by Cramer's rule , we obtain
\[x = \frac{D_1}{D} = \frac{21}{21} = 1\] 
\[y = \frac{D_2}{D} = \frac{6}{- 21} = - \frac{2}{7}\] 
\[z = \frac{D_3}{D} = \frac{- 6}{- 21} = \frac{2}{7}\] 
\[w = \frac{D_4}{D} = \frac{3}{- 21} = - \frac{1}{7}\] 
\[\text{ Hence,} x = 1, y = - \frac{2}{7}, z = \frac{2}{7}, w = - \frac{1}{7}\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 21 | पृष्ठ ८४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.


The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.


Express the following equations in the matrix form and solve them by method of reduction :

2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1


Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :

`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`


For what values of k, the system of linear equations

x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4

has a unique solution?

 


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


Prove that  `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


The cost of 2 books, 6 notebooks and 3 pens is  Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


2x − y = 5
4x − 2y = 7


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices. 


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`


Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Solve the following :

If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.


If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.


Choose the correct alternative:

If A = `[(1, 2),(2, -1)]`, then adj (A) = ______


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


For which values of xis the matrix

`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______ 


If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______ 


If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.


If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The number of elements


Find the matrix A satisfying the matrix equation:

`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`


If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`


If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.


Two matrices are equal if they have same number of rows and same number of columns.


If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


if `A = [(2,5),(1,3)] "then" A^-1` = ______


If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then"  x = 1  "and"  y = -1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×