Advertisements
Advertisements
प्रश्न
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
उत्तर
A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]`
∴ |A| = `|(1, 0, 1),(0, 2, 3),(1, 2, 1)|`
= 1(2 – 6) – 0 + 1(0 – 2)
= 1(– 4) + 1(– 2)
= – 4 – 2
= – 6 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` A–1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R3 → R3 – R1, we get
`[(1, 0, 1),(0, 2, 3),(0, 2, 0)]` A–1 = `[(1, 0, 0),(0, 1, 0),(-1, 0, 1)]`
Applying R2 → `(1/2)` R2, we get
`[(1, 0, 1),(0, 1, 3/2),(0, 2, 0)]` A–1 = `[(1, 0, 0),(0, 1/2, 0),(-1, 0, 1)]`
Applying R3 → R3 – 2R2, we get
`[(1, 0, 1),(0, 1, 3/2),(0, 0, -3)]` A–1 = `[(1, 0, 0),(0, 1/2, 0),(-1, -1, 1)]`
Applying R3 → `(-1/3)` R3, we get
`[(1, 0, 1),(0, 1, 3/2),(0, 0, 1)]` A–1 = `[(1, 0, 0),(0, 1/2, 0),(1/3, 1/3, -1/3)]`
Applying R1 → R1 – R3, R2 → R2 – `(3/2)` R3, we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` A–1 = `[(2/3, -1/3, 1/3),(-1/2, 0, 1/2),(1/3, 1/3, -1/3)]`
∴ A–1 = `[(2/3, -1/3, 1/3),(-1/2, 0, 1/2),(1/3, 1/3, -1/3)]`
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
Prove that `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.
Using elementary transformations, find the inverse of the matrix A = `((8,4,3),(2,1,1),(1,2,2))`and use it to solve the following system of linear equations :
8x + 4y + 3z = 19
2x + y + z = 5
x + 2y + 2z = 7
The cost of 2 books, 6 notebooks and 3 pens is Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
Prove that :
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.
If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?