Advertisements
Advertisements
प्रश्न
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
उत्तर
BA = `[(4, 1),(2, 3),(1, 2)]_(3 xx 2) [(2, 1, 2),(1, 2, 4)]_(2 xx 3)`
BA = `[(8 + 1, 4 + 2, 8 + 4),(4 + 3, 2 + 6, 4 + 12),(2 + 2, 1 + 4, 2 + 8)]_(3 xx 3)`
= `[(9, 6, 12),(7, 8, 16),(4, 5, 10)]_(3 xx 3)`
Now AB = `[(2, 1, 2),(1, 2, 4)]_(2 xx 3) [(4, 1),(2, 3),(1, 2)]_(3 xx 2)`
= `[(8 + 2 + 2, 2 + 3 + 4),(4 + 4 + 4, 1 + 6 + 8)]_(2 xx 2)`
= `[(12, 9),(12, 15)]_(2 xx 2)`
Hence, BA = `[(9, 6, 12),(7, 8, 16),(4, 5, 10)]` and AB = `[(12, 9),(12, 15)]`.
APPEARS IN
संबंधित प्रश्न
The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.
The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :
`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`
For what values of k, the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
has a unique solution?
If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
Prove that `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
2x − y = 5
4x − 2y = 7
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.
Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Choose the correct alternative.
If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______
Choose the correct alternative.
If A = `[(2, 5),(1, 3)]`, then A–1 = _______
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______
For which values of xis the matrix
`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
The inverse of a symmetric matrix is ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find the matrix A satisfying the matrix equation:
`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
Two matrices are equal if they have same number of rows and same number of columns.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.
If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x