हिंदी

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements? - Mathematics

Advertisements
Advertisements

प्रश्न

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

योग

उत्तर

We know that, if a matrix is of order m × n, it has mn elements, where m and n are natural numbers.

We have, m × n = 28

⇒ (m, n) = {(1, 28), (2, 14), (4, 7), (7, 4), (14, 2), (28, 1)}

So, the possible orders are 1 × 28, 2× 14, 4 × 7, 7 × 4, 14 × 2, 28 × 1.

Also, if it has 13 elements, then m × n = 13

⇒ (m, n) = (1, 13),(13, 1)}

Hence, the possible orders are 1 × 13, 13 × 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 1 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.


For what values of k, the system of linear equations

x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4

has a unique solution?

 


Using the properties of determinants, solve the following for x:

`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1


2x − y = 5
4x − 2y = 7


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Choose the correct alternative.

If A = `[(2, 5),(1, 3)]`, then A–1 = _______


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Solve the following :

If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.


If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


if `A = [(2,5),(1,3)] "then" A^-1` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×